Les trois grands problèmes de l’Antiquité sont trois problèmes géométriques à résoudre à la règle et au compas : la duplication du cube, la quadrature du cercle et la trisection de l’angle. Ce n’est qu’au XIXe siècle, soit plus de 2500 ans après qu’ils furent énoncés, qu’on démontra avec certitude que ces trois problèmes étaient impossibles à résoudre.
Ces trois problèmes sont :
Duplication du cube : à l’aide d’une règle et d’un compas, est-il possible de construire un cube de volume double ?
Quadrature du cercle : à l’aide d’une règle et d’un compas, est-il possible de construire un carré dont l’aire égale celle d’un disque ?
Trisection de l’angle : à l’aide d’une règle et d’un compas, est-il possible de sectionner en trois parties égales n’importe quel angle ?
Tous les commentaires (101)
Il n'y a pas de problèmes, que des solutions.
Vous ne vous êtes posé la question que le gars qui a énoncé ce problème avait la solution.