La loi commutative permet de calculer les pourcentages plus facilement

Proposé par
le
dans

Commentaires préférés (3)

a écrit : Je suis triste, en tant que prof de maths, que cette anecdote soit passée... cela signifie que pas mal de gens ont oublié leurs cours du lycée.

Autres astuces efficaces :
* au lieu de chercher à retenir la table de 5, pour multiplier par 5 il suffit de multiplier par 10 ( ajouter un 0, ou déplacer
la vigule vers la droite) et de diviser par 2.

* au lieu de chercher à diviser par 5, il suffit de multiplier par 2 et de diviser par 10 ( retirer un 0, ou déplacer la vigule vers la gauche )

Tout ceci car 5 = 10 / 2, et diviser par un nombre revient à multiplier par son inverse.
Afficher tout
Pourquoi ce serait triste ? Il est évident qu’on oublie pas mal de choses à partir du moment où on ne les utilise pas.

Je faisais 8h de maths par jour en MP* à manipuler des notions mathématiques plutôt complexes. Aujourd’hui, pour mon métier, je fais des produits en croix sur ma calculette et des tableurs Excel sur mon ordinateur. Et je t’assure que j’ai oublié 99% de ce que j’ai appris ... c’est dommage mais ce n’est ni triste, ni grave ;)

Je trouve au contraire qu’il n’est jamais trop tard pour apprendre ou se rappeler.

a écrit : C'est vrai que ça marche bien quand on a un chiffre rond sur les deux : 50% de 23, on va s'en sortir :)
Mais pour, par exemple, 23% de 37, on est dans les deux cas dans la merde :)
Bah, au pire tu prends 40 au lieu de 37. Comme un bon physicien.

Posté le

android

(89)

Répondre

a écrit : C'est peut-être parce que je répète je ne sais combien de fois ces propriétés tous les jours, tous les ans, et que je vais encore le faire une bonne trentaine d'années, mais cela m'attriste de voir qu'une propriété aussi simple ait été oubliée par une grande majorité des gens.
Je veux bien qu&
#039;on oublie les théorèmes de Thalès et Pythagore, je veux bien qu'on oublie la notion de dérivation car pour le coup il n'y a aucun intérêt à connaître tout ceci par coeur de nos jours, même en étant ingénieur. Mais pour les pourcentages de pourcentages et les calculs de base, je suis triste que tout le monde utilise son tableur ou sa calculatrice à tout bout de champ. Afficher tout
A mon sens tu te méprends sur un truc.

Je crois que tout le monde qui est passé par l'école se souvent que 5 + 7 = 7 + 5.
et que 23*50 = 50*23. Si tu as peur qu'on oublie ça, rassure toi, je crois que c'est pas pret d'arriver.

Mais ce n'est pas pour ça que tout le monde pense à utiliser cette propriété quand il s'agit des pourcentages. C'est en cela que je trouve l'anecdote super chouette, c'est qu'elle permet de faire un lien entre des concepts à priori éloignés : un calcul de pourcentage et la commutativité des opérations.

Donc rassure toi, tes explications sont toujours bien utiles. Et par ailleurs, à titre personnel, j'ai pas du tout oublié la notion de dérivation tellement j'en ai souffert !


Tous les commentaires (116)

Je suis triste, en tant que prof de maths, que cette anecdote soit passée... cela signifie que pas mal de gens ont oublié leurs cours du lycée.

Autres astuces efficaces :
* au lieu de chercher à retenir la table de 5, pour multiplier par 5 il suffit de multiplier par 10 ( ajouter un 0, ou déplacer la vigule vers la droite) et de diviser par 2.

* au lieu de chercher à diviser par 5, il suffit de multiplier par 2 et de diviser par 10 ( retirer un 0, ou déplacer la vigule vers la gauche )

Tout ceci car 5 = 10 / 2, et diviser par un nombre revient à multiplier par son inverse.

Posté le

android

(4)

Répondre

J'aime bien l'autre astuce de la première source quand le calcul meme inversé n'est pas si simple :
23% de 90 = 90% de 23 ca reste compliqué donc
On calcule 10% de 23=2,3
Et 90% de 23=23-2,3=20,7 CQFD
Facile les maths !

Posté le

android

(45)

Répondre

a écrit : Je suis triste, en tant que prof de maths, que cette anecdote soit passée... cela signifie que pas mal de gens ont oublié leurs cours du lycée.

Autres astuces efficaces :
* au lieu de chercher à retenir la table de 5, pour multiplier par 5 il suffit de multiplier par 10 ( ajouter un 0, ou déplacer
la vigule vers la droite) et de diviser par 2.

* au lieu de chercher à diviser par 5, il suffit de multiplier par 2 et de diviser par 10 ( retirer un 0, ou déplacer la vigule vers la gauche )

Tout ceci car 5 = 10 / 2, et diviser par un nombre revient à multiplier par son inverse.
Afficher tout
Pourquoi ce serait triste ? Il est évident qu’on oublie pas mal de choses à partir du moment où on ne les utilise pas.

Je faisais 8h de maths par jour en MP* à manipuler des notions mathématiques plutôt complexes. Aujourd’hui, pour mon métier, je fais des produits en croix sur ma calculette et des tableurs Excel sur mon ordinateur. Et je t’assure que j’ai oublié 99% de ce que j’ai appris ... c’est dommage mais ce n’est ni triste, ni grave ;)

Je trouve au contraire qu’il n’est jamais trop tard pour apprendre ou se rappeler.

C'est vrai que ça marche bien quand on a un chiffre rond sur les deux : 50% de 23, on va s'en sortir :)
Mais pour, par exemple, 23% de 37, on est dans les deux cas dans la merde :)

a écrit : Pourquoi ce serait triste ? Il est évident qu’on oublie pas mal de choses à partir du moment où on ne les utilise pas.

Je faisais 8h de maths par jour en MP* à manipuler des notions mathématiques plutôt complexes. Aujourd’hui, pour mon métier, je fais des produits en croix sur ma calculette et des table
urs Excel sur mon ordinateur. Et je t’assure que j’ai oublié 99% de ce que j’ai appris ... c’est dommage mais ce n’est ni triste, ni grave ;)

Je trouve au contraire qu’il n’est jamais trop tard pour apprendre ou se rappeler.
Afficher tout
En tout cas, il manque l'option, JLSDMJATO (je le savais déjà mais j'avais totalement oublié).

Posté le

android

(32)

Répondre

a écrit : Pourquoi ce serait triste ? Il est évident qu’on oublie pas mal de choses à partir du moment où on ne les utilise pas.

Je faisais 8h de maths par jour en MP* à manipuler des notions mathématiques plutôt complexes. Aujourd’hui, pour mon métier, je fais des produits en croix sur ma calculette et des table
urs Excel sur mon ordinateur. Et je t’assure que j’ai oublié 99% de ce que j’ai appris ... c’est dommage mais ce n’est ni triste, ni grave ;)

Je trouve au contraire qu’il n’est jamais trop tard pour apprendre ou se rappeler.
Afficher tout
C'est peut-être parce que je répète je ne sais combien de fois ces propriétés tous les jours, tous les ans, et que je vais encore le faire une bonne trentaine d'années, mais cela m'attriste de voir qu'une propriété aussi simple ait été oubliée par une grande majorité des gens.
Je veux bien qu'on oublie les théorèmes de Thalès et Pythagore, je veux bien qu'on oublie la notion de dérivation car pour le coup il n'y a aucun intérêt à connaître tout ceci par coeur de nos jours, même en étant ingénieur. Mais pour les pourcentages de pourcentages et les calculs de base, je suis triste que tout le monde utilise son tableur ou sa calculatrice à tout bout de champ.

Posté le

android

(0)

Répondre

Ca me fait trop rire que l'anecdote soit sourcée :D

C'est vrai que juste en lisant, on peut pas être sur que ça soit vrai ... peut être qu'en fait, X*Y est pas égal à Y*X ...

a écrit : C'est peut-être parce que je répète je ne sais combien de fois ces propriétés tous les jours, tous les ans, et que je vais encore le faire une bonne trentaine d'années, mais cela m'attriste de voir qu'une propriété aussi simple ait été oubliée par une grande majorité des gens.
Je veux bien qu&
#039;on oublie les théorèmes de Thalès et Pythagore, je veux bien qu'on oublie la notion de dérivation car pour le coup il n'y a aucun intérêt à connaître tout ceci par coeur de nos jours, même en étant ingénieur. Mais pour les pourcentages de pourcentages et les calculs de base, je suis triste que tout le monde utilise son tableur ou sa calculatrice à tout bout de champ. Afficher tout
En même temps, il ne fallait pas répéter aux élèves (il y a 10 ans) à tout bout de champs : "il faut savoir faire ça de tête car vous n'aurez pas toujours une calculette dans la poche !".
euh.... si :)

Bon c'est de l'humour évidemment et je m'énerve tout seul quand à la boulangerie, elle tape sur une calculette pour savoir combien de monnaie elle doit me rendre alors qu'il s'agit d'une bête soustraction. Mais cela reste un débat intéressant. Où placer le curseur entre "apprendre aux élèves à réfléchir et utiliser des outils pour obtenir des réponses par eux mêmes" et "leur farcir la tête de formules et de données".
Les deux sont importants mais à mon avis, il est plus sage de savoir chercher plutôt que connaitre.

a écrit : C'est vrai que ça marche bien quand on a un chiffre rond sur les deux : 50% de 23, on va s'en sortir :)
Mais pour, par exemple, 23% de 37, on est dans les deux cas dans la merde :)
Bah, au pire tu prends 40 au lieu de 37. Comme un bon physicien.

Posté le

android

(89)

Répondre

a écrit : Je suis triste, en tant que prof de maths, que cette anecdote soit passée... cela signifie que pas mal de gens ont oublié leurs cours du lycée.

Autres astuces efficaces :
* au lieu de chercher à retenir la table de 5, pour multiplier par 5 il suffit de multiplier par 10 ( ajouter un 0, ou déplacer
la vigule vers la droite) et de diviser par 2.

* au lieu de chercher à diviser par 5, il suffit de multiplier par 2 et de diviser par 10 ( retirer un 0, ou déplacer la vigule vers la gauche )

Tout ceci car 5 = 10 / 2, et diviser par un nombre revient à multiplier par son inverse.
Afficher tout
En existe t-il qui ont tout retenu ?
Je suis totalement d'accord avec la réflexion de TybsXckZ, la plupart des choses que j'ai apprise ne me serve jamais réellement . A part bien sûr les notions de bases apprises en primaire (lecture, écriture et un peu de math). C'est la curiosité qui m'a fait apprendre la plupart des choses qui me servent aujourd'hui.
En fait le truc le plus important que l'on apprends à l'école c'est comment apprendre par soi-même.

a écrit : C'est peut-être parce que je répète je ne sais combien de fois ces propriétés tous les jours, tous les ans, et que je vais encore le faire une bonne trentaine d'années, mais cela m'attriste de voir qu'une propriété aussi simple ait été oubliée par une grande majorité des gens.
Je veux bien qu&
#039;on oublie les théorèmes de Thalès et Pythagore, je veux bien qu'on oublie la notion de dérivation car pour le coup il n'y a aucun intérêt à connaître tout ceci par coeur de nos jours, même en étant ingénieur. Mais pour les pourcentages de pourcentages et les calculs de base, je suis triste que tout le monde utilise son tableur ou sa calculatrice à tout bout de champ. Afficher tout
A mon sens tu te méprends sur un truc.

Je crois que tout le monde qui est passé par l'école se souvent que 5 + 7 = 7 + 5.
et que 23*50 = 50*23. Si tu as peur qu'on oublie ça, rassure toi, je crois que c'est pas pret d'arriver.

Mais ce n'est pas pour ça que tout le monde pense à utiliser cette propriété quand il s'agit des pourcentages. C'est en cela que je trouve l'anecdote super chouette, c'est qu'elle permet de faire un lien entre des concepts à priori éloignés : un calcul de pourcentage et la commutativité des opérations.

Donc rassure toi, tes explications sont toujours bien utiles. Et par ailleurs, à titre personnel, j'ai pas du tout oublié la notion de dérivation tellement j'en ai souffert !

a écrit : Je suis triste, en tant que prof de maths, que cette anecdote soit passée... cela signifie que pas mal de gens ont oublié leurs cours du lycée.

Autres astuces efficaces :
* au lieu de chercher à retenir la table de 5, pour multiplier par 5 il suffit de multiplier par 10 ( ajouter un 0, ou déplacer
la vigule vers la droite) et de diviser par 2.

* au lieu de chercher à diviser par 5, il suffit de multiplier par 2 et de diviser par 10 ( retirer un 0, ou déplacer la vigule vers la gauche )

Tout ceci car 5 = 10 / 2, et diviser par un nombre revient à multiplier par son inverse.
Afficher tout
Dans beaucoup de métier il n'y a besoin ni d'écrire ni de lire ni de compter, c'est comme ça. Alors forcement certaine notion peuvent être oubliée. Et ceux qui doivent le faire ont accès soit à un PC soit à un smartphone.

Sauf que justement, cette anecdote parle d'une notion ultra basique des maths. Je sais bien que quasiment personne ne retiendra tous les cours de maths du lycée, et d'ailleurs ce n'est pas le but, mais pour ce genre de chose, qu'on utilise pour le coup tous les jours, ce serait bien qu'on fasse l'effort de retenir et d'avoir des réflexes plutôt que de sortir sa calculatrice constamment.

Moi, je m'en fiche que mes élèves fassent des antisèches avec les formules de dérivation d'un produit, d'un quotient, ou d'intégration... car cela ne leur servira à rien du tout en sortant du lycée, sauf pour 10% d'entre eux (qui bizarement n'ont pas besoin d'antisèche), mais franchement j'ai mal pour eux quand ils sortent leur calculatrice pour obtenir le résultat de 23% de 50.
Avec les nouveaux programmes, et la notion d'automatismes, j'espère que cela va s'arranger, mais pour l'instant c'est ultra triste.

Posté le

android

(1)

Répondre

Bah mon cerveau tordu lui il calcule 23% de 100 et il divise le résultat par deux.
D'ailleurs on peut effectuer des multiplications apparemment difficiles très rapidement en utilisant le fait que l'ordre n'a pas d'effet sur les multiplications, exemple : 9x213 devient 213x10-200-10-3
C'est pour ça que le calcule mental est la seule partie des maths à ne pas me torturer les neurones, on peut arriver de plein de façons différentes au même resultat et simplement en plus.

Posté le

android

(17)

Répondre

a écrit : Pourquoi ce serait triste ? Il est évident qu’on oublie pas mal de choses à partir du moment où on ne les utilise pas.

Je faisais 8h de maths par jour en MP* à manipuler des notions mathématiques plutôt complexes. Aujourd’hui, pour mon métier, je fais des produits en croix sur ma calculette et des table
urs Excel sur mon ordinateur. Et je t’assure que j’ai oublié 99% de ce que j’ai appris ... c’est dommage mais ce n’est ni triste, ni grave ;)

Je trouve au contraire qu’il n’est jamais trop tard pour apprendre ou se rappeler.
Afficher tout
Il parlait des bases du calcul mental pouvant servir tous les jours, pas des nombres imaginaires et autres asymptotes...

Posté le

android

(0)

Répondre

a écrit : A mon sens tu te méprends sur un truc.

Je crois que tout le monde qui est passé par l'école se souvent que 5 + 7 = 7 + 5.
et que 23*50 = 50*23. Si tu as peur qu'on oublie ça, rassure toi, je crois que c'est pas pret d'arriver.

Mais ce n'est pas pour ça que
tout le monde pense à utiliser cette propriété quand il s'agit des pourcentages. C'est en cela que je trouve l'anecdote super chouette, c'est qu'elle permet de faire un lien entre des concepts à priori éloignés : un calcul de pourcentage et la commutativité des opérations.

Donc rassure toi, tes explications sont toujours bien utiles. Et par ailleurs, à titre personnel, j'ai pas du tout oublié la notion de dérivation tellement j'en ai souffert !
Afficher tout
On apprend aussi cette "astuce" au lycée...on n'apprend pas uniquement la commutativité de la multiplication et de l'addition des nombres réels. D'ailleurs ça, on l'apprend avant le lycée. Au lycée on apprend à utiliser ces commutativités. Et c'est pour ça que cela m'attriste... la plupart des gens oublient les choses les plus basiques des maths. Souvent parce qu'ils ont été traumatisés par certains profs nuls et méchants, parfois parce qu'ils se sont juste convaincus tout seul que ça ne servait à rien. Mais "oublier" que 23% de 50 c'est la même chose que 50% de 23, je trouve ça grave et triste.

Posté le

android

(0)

Répondre

a écrit : Bah mon cerveau tordu lui il calcule 23% de 100 et il divise le résultat par deux.
D'ailleurs on peut effectuer des multiplications apparemment difficiles très rapidement en utilisant le fait que l'ordre n'a pas d'effet sur les multiplications, exemple : 9x213 devient 213x10-200-10-3
C&#
039;est pour ça que le calcule mental est la seule partie des maths à ne pas me torturer les neurones, on peut arriver de plein de façons différentes au même resultat et simplement en plus. Afficher tout
Vous n'êtes pas tordu... tout le monde devrait penser comme vous...

Posté le

android

(1)

Répondre

a écrit : Sauf que justement, cette anecdote parle d'une notion ultra basique des maths. Je sais bien que quasiment personne ne retiendra tous les cours de maths du lycée, et d'ailleurs ce n'est pas le but, mais pour ce genre de chose, qu'on utilise pour le coup tous les jours, ce serait bien qu'on fasse l'effort de retenir et d'avoir des réflexes plutôt que de sortir sa calculatrice constamment.

Moi, je m'en fiche que mes élèves fassent des antisèches avec les formules de dérivation d'un produit, d'un quotient, ou d'intégration... car cela ne leur servira à rien du tout en sortant du lycée, sauf pour 10% d'entre eux (qui bizarement n'ont pas besoin d'antisèche), mais franchement j'ai mal pour eux quand ils sortent leur calculatrice pour obtenir le résultat de 23% de 50.
Avec les nouveaux programmes, et la notion d'automatismes, j'espère que cela va s'arranger, mais pour l'instant c'est ultra triste.
Afficher tout
Qu'on utilise tous les jours ? Des pourcentages à faire de tête ? A part pour des promotions qui sont la plupart du temps des % faciles, je ne vois pas.
Le principal c'est que finalement ils y arrivent avec un outil.

a écrit : Dans beaucoup de métier il n'y a besoin ni d'écrire ni de lire ni de compter, c'est comme ça. Alors forcement certaine notion peuvent être oubliée. Et ceux qui doivent le faire ont accès soit à un PC soit à un smartphone. Mais vous ne vous définissez que par votre métier ? Vous n'achetez jamais de robe à 230 euros, soldée à 70 % ? Vous ne cherchez jamais à calculer quel est le meilleur prix au kilo ? Vous n'allez jamais au resto entre amis et vous ne divisez jamais la note par 5 ?

Posté le

android

(5)

Répondre

a écrit : Pourquoi ce serait triste ? Il est évident qu’on oublie pas mal de choses à partir du moment où on ne les utilise pas.

Je faisais 8h de maths par jour en MP* à manipuler des notions mathématiques plutôt complexes. Aujourd’hui, pour mon métier, je fais des produits en croix sur ma calculette et des table
urs Excel sur mon ordinateur. Et je t’assure que j’ai oublié 99% de ce que j’ai appris ... c’est dommage mais ce n’est ni triste, ni grave ;)

Je trouve au contraire qu’il n’est jamais trop tard pour apprendre ou se rappeler.
Afficher tout
Oui mais dans le cas de l'anecdote c'est quand même un truc sacrément basique. C'est une application d'une des règles les plus fondamentales du calcul. Ne pas se souvenir de cette application particulière c'est ok, ne pas être capable de la retrouver quand on est confronté à une multiplication de fractions c'est triste.
C'est comme une identité remarquable, ne pas s'en souvenir ça va, ne pas être capable de la retrouver en réfléchissant quelque peu c'est triste.
Tu as oublié 99% de ce que tu as appris, mais je suis sûr que tu serais capable de retrouver beaucoup de ces règles oubliés si tu étais confronté à un problème ou y recourir faciliterait beaucoup la vie.